A FETI-DP Preconditioner with A Special Scaling for Mortar Discretization of Elliptic Problems with Discontinuous Coefficients

نویسندگان

  • Nina N. Dokeva
  • Maksymilian Dryja
  • Wlodzimierz Proskurowski
چکیده

We consider two-dimensional elliptic problems with discontinuous coefficients discretized by the finite element method on geometrically conforming nonmatching triangulations across the interface using the mortar technique. The resulting discrete problem is solved by a dual-primal FETI method. In this paper we introduce and analyze a preconditioner with a special scaling of coefficients and step parameters and establish convergence bounds. We show that the preconditioner is almost optimal with constants independent of the jumps of coefficients and step parameters. Extensive computational evidence is presented that illustrates an almost optimal convergence for a variety of situations (distribution of subregions, grid assignment, grid ratios, number of subregions) for both continuous and discontinuous problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel scalability of a FETI–DP mortar method for problems with discontinuous coefficients

We consider elliptic problems with discontinuous coefficients discretized by FEM on non-matching triangulations across the interface using the mortar technique. The resulting discrete problem is solved by a FETI–DP method using a preconditioner with special scaling described in Dokeva, Dryja and Proskurowski [to appear]. Experiments performed on hundreds of processors show that this FETI–DP mor...

متن کامل

A FETI-DP Method for the Mortar Discretization of Elliptic Problems with Discontinuous Coefficients

Second order elliptic problems with discontinuous coefficients are considered. The problem is discretized by the finite element method on geometrically conforming non-matching triangulations across the interface using the mortar technique. The resulting discrete problem is solved by a FETI-DP method. We prove that the method is convergent and its rate of convergence is almost optimal and indepe...

متن کامل

A Neumann-dirichlet Preconditioner for a Feti-dp Formulation with Mortar Methods

In this article, we review a dual-primal FETI (FETI-DP) method with mortar methods. The mortar matching condition is used as the continuity constraints for the FETI-DP formulation. A Neumann-Dirichlet preconditioner is investigated and it is shown that the condition number of the preconditioned FETI-DP operator for the two-dimensional elliptic problem is bounded by C maxi=1,...,N{(1 + log (Hi/h...

متن کامل

UN CO RR EC TE D PR O O F 1 A Neumann - Dirichlet Preconditioner for FETI - DP 2 Method for Mortar Discretization of a Fourth Order 3 Problems in 2 D 4

FETI-DP methods were introduced in [8]. They form a class of fast and efficient 13 iterative solvers for algebraic systems of equations arising from the finite element 14 discretizations of elliptic partial differential equations of second and fourth order, 15 cf. [8, 10, 11, 16] and references therein. In a one-level FETI-DP method one has 16 to solve a linear system for a set of dual variable...

متن کامل

A FETI-DP Preconditioner for a Composite Finite Element and Discontinuous Galerkin Method

In this paper a Nitsche-type discretization based on discontinuous Galerkin (DG) method for an elliptic two-dimensional problem with discontinuous coefficients is considered. The problem is posed on a polygonal region Ω which is a union of N disjoint polygonal subdomains Ωi of diameter O(Hi). The discontinuities of the coefficients, possibly very large, are assumed to occur only across the subd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2006